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Abstract

As it is getting increasingly difficult to achieve gains in the density and power efficiency of

microelectronic computing devices because of lithographic techniques reaching fundamen-

tal physical limits, new approaches are required to maximize the benefits of distributed sen-

sors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural

networks, can process information with a high level of parallelism to efficiently solve difficult

problems, even when implemented using conventional microelectronic technologies. We

describe a mechanical device, which operates in a manner similar to artificial neural net-

works, to solve efficiently two difficult benchmark problems (computing the parity of a bit

stream, and classifying spoken words). The device consists in a network of masses coupled

by linear springs and attached to a substrate by non-linear springs, thus forming a network

of anharmonic oscillators. As the masses can directly couple to forces applied on the device,

this approach combines sensing and computing functions in a single power-efficient device

with compact dimensions.

Introduction

Massively-parallel networks of simple units with elementary non-linear processing capabilities,

such as artificial neural networks, have been used for years as efficient and robust computing

systems. In general, a network of N elements is described by the state column vector

xðtÞ 2 RN . The state vector evolves with time t as a stimulus u(t) is imposed on the network,

according to the rich dynamics created by the interconnection of the elements in the network.

In a particularly simple network architecture called “reservoir computing” [1], an output func-

tion

yðtÞ ¼ wTxðtÞ ð1Þ

is formed using a weight vector w 2 RN . As the network is fed a training signal u�(t), the

weights are adjusted to minimize an error function between y(t) and a target function y�(t) = F
[u�(t)]. F is a complicated transformation of the input signal, which is used to represent the

computing capabilities of the network. During this training phase, the internal structure of the

network is left untouched, and only the output weights are adjusted.
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Such “reservoir computers” can approximate the transformation F correctly when their

dynamics obey the echo state property [2], in which case the states xðtÞ do not depend on the

stimuli u(t − τ) for a time τ that is sufficiently long. A reservoir computer with the echo state

property will exhibit useful computing capabilities when the weights obtained during the train-

ing phase can be used to form an output y(t) that is close to F[u(t)], for a new stimulus u(t)
similar enough to u�(t). It is actually observed in numerical experiments that reservoir com-

puters perform well when the networks driven by the stimulus u(t) operate as systems with

complex dynamics [3]. As such, reservoir computers are an efficient approach to exploit archi-

tectures such as recurrent neural networks, which are Turing equivalent [4], but which are dif-

ficult to train using conventional methods. In practice, reservoir computers have been shown

to be accurate and resource-efficient solutions to a number of challenging problems (e.g. ref.

[1, 5, 6]).

A useful characteristic of reservoir computers is their fixed internal structure. The network

is generally constructed randomly with a few deterministic constraints such as limits on the

spectral radius of the network connection matrix [7], for instance. Following the network con-

struction, different weight vectors can be computed to enable the network to perform different

tasks. This fixed structure is especially attractive from the point of view of hardware implemen-

tation, as it does not require interconnections with dynamically adjustable strengths between

the network elements, or other forms of network adaptability. A number of hardware imple-

mentations of reservoir computers have been discussed, including analog electronics [8], self-

assembled atomic switches [9], optoelectronic devices [10] and photonic devices [11].

This motivates the search for hardware elements that can be arranged in a network to form

a dynamical system able to respond to an external stimulus, and to exhibit the echo state prop-

erty. We are especially interested in dynamical systems which can be stimulated directly by

physical forces, such as accelerations or mechanical pressure. In this communication, we verify

numerically the hypothesis that non-linear (anharmonic) mechanical oscillators coupled by

linear springs can perform non-trivial computations. This opens up the possibility for minia-

ture, energy-efficient computers. As the mechanical elements are sensitive to physical forces, it

also blurs the boundary between sensors and computers, with great opportunities in control

and signal processing, for instance.

The objective of this study is to demonstrate that a network of non-linear mechanical oscil-

lators can perform complex computations within the framework of reservoir computing. We

choose a specific form for the network, which is described in details below, and show that a

single instance of such a network can efficiently solve two widely different computing prob-

lems. This establishes the usability of networks of mechanical oscillators as general-purpose

computing devices, which are able to efficiently process information from complex physical

stimuli.

The following system is considered (see Fig 1 for a schematic description):

€xiðtÞ ¼ �
o0

Q
_xiðtÞ � o2

0
xiðtÞ � bix

3

i ðtÞþ

A½1þ DiuðtÞ� cos ðOtÞ þ o2
1
½xi� 1ðtÞ � 2xiðtÞ þ xiþ1ðtÞ�;

ð2Þ

where dots denote derivatives with respect to time, i = 1, . . ., N and obvious modifications are

made to the last term for i = 1 (:::þ o2
1
½� x1ðtÞ þ x2ðtÞ�) and i = N (:::þ o2

1
½xN� 1ðtÞ � xNðtÞ�).

Eq (2) describes a chain of nominally identical Duffing oscillators, except for the anharmonic

term of strength βi which can vary in different oscillators. Oscillators with βi = 0 would be stan-

dard harmonic oscillators with resonance angular frequency o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1=4Q2

p
and quality fac-

tor Q. The strength of the coupling between neighboring oscillators is parameterized by ω1.
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The oscillators are driven by a harmonic term cos(Ot) at angular frequency O, with a mean

amplitude A modulated by the input signal u(t), scaled by the parameter Δi. When the drive

amplitudes are large, the system can exhibit very complex dynamics, including extreme sensi-

tivity to initial conditions (chaos). At lower drive amplitudes, the dynamics can still be com-

plex but are no longer chaotic. Because of damping, the system exhibits the echo state property

when its dynamics have a single attractor. The existence of a single attractor (for a given class

of input signals u) is verified numerically by obtaining a stable, high success probability when

the oscillator network is trained for a particular task.

We present in section 1 an example of an instance of a network described by Eq (2) (with

N = 400), which performs well on two significantly different benchmark computing tasks,

namely the computation of non-trivial digital functions requiring memory (the parity function

test), and the recognition of spoken digits. This demonstrates that a given network (with fixed

structure) can process information in widely different and complex ways. This might be espe-

cially relevant technologically for space- and power-constraint applications, where it is benefi-

cial to collocate a device sensing and processing functions.

We consider as an example of a concrete implementation a network of thin doubly clamped

silicon beams of length l operated in their out-of-plane mode. Such a network could be fabri-

cated using conventional MEMS technologies. The number density of oscillators would be

approximately

5� 104 mm� 2
l

10 mm

� �� 2 Rw

0:1

� �� 1

; ð3Þ

where Rw is the width-to-length ratio of the beams. The resonance frequency of such oscillators

is [12]

o0=2p ¼ 8:5 MHz
Rt

0:01

� �
l

10 mm

� �� 1

; ð4Þ

where Rt is the thickness-to-length ratio of the beam. As non-linear effects must be present in

the oscillators for non-trivial computing capabilities to emerge, their oscillation amplitudes

should be sufficiently large. The minimum amplitude for the onset of non-linear effects in a

Fig 1. Schematic description of the computing network. The N inertial masses (circles) arranged in a

chain are coupled to neighbors by linear springs, and to a substrate by linear or non-linear springs, with

damping. A harmonic forcing, with amplitude possibly modulated by couplings to the input signal u(t), is

imposed on the masses.

https://doi.org/10.1371/journal.pone.0178663.g001
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double clamped silicon beam is approximated by [12]

xnl ¼ 20 nm
Q

100

� �� 1=2 Rt

0:01

� �
l

10 mm

� �

: ð5Þ

The energy in one oscillator is meff x2
nlo

2
0
=2, for meff the effective mass of the beam, so the

mechanical power required to drive one oscillator in the reservoir is

0:5 nW
Q

100

� �� 2 Rt

0:01

� �6 Rw

0:1

� �
l

10 mm

� �2

: ð6Þ

For comparison, reference [13] describes a state-of-the-art neuromorphic computing device

implemented in the 28-nm CMOS technology with 106 computing elements (artificial neu-

rons). This device achieves a neuron number density of 2 × 103 mm−2 (or 7 × 104 mm−2 when

the peripheral circuitry not directly implementing the neurons is not considered). Its power

consumption per neuron is on the order of 90 nW. As another example, reference [14] pres-

ents another neuromorphic chip (130-nm CMOS) with an artificial neuron number density of

3 × 103 mm−2 and power consumption per neuron of 4 nW. The mechanical portion of the

proposed reservoir computer with silicon beams could thus be smaller (by one order or magni-

tude) or more energy efficient (by one or two orders of magnitude) than a state-of-the-art

microelectronic devices with the same number of computing element. The density and power

estimates of the oscillator network do not include the oscillator motion sensing, summation

and amplification, which are expected to be implemented in efficient analog electronics, possi-

bly using advanced packaging schemes such a heterogeneous integration.

Reservoir computers made of a network of coupled anharmonic mechanical oscillators

therefore appear as interesting candidates for miniature, power-efficient devices that can be

driven directly by physical signals (external fields, inertial or pressure forces, etc.), potentially

allowing the creation of sensors with complex computing capabilities. Numerical simulations

demonstrating the computing capabilities of a mechanical oscillator network are presented in

section 1, while the robustness of this computing model with respect to possible variability in

the hardware implementation are discussed in section 2.

1 Computing with a network of anharmonic oscillators

The main result of this section is a numerical demonstration that a single instance of a network

of coupled anharmonic oscillators, as described by Eq (2), can perform well on different com-

puting benchmarks. All numerical results are obtained with the same oscillator network,

excepted where explicitly mentioned for robustness evaluations. It should be emphasized that

the particular parameters and structure of the network presented below were only selected to

demonstrate the usefulness of networks of oscillators as computers; the optimization of these

parameters and structure to achieve better performances on specific tasks will be the subject of

future communications.

The network consists of a long chain of N = 400 oscillators, each with fundamental angular

frequency ω0 = 1.3 and quality factor Q = 60. The oscillators are randomly assigned a strong (β
= 1) non-linearity with a probability of 25%, and are otherwise assigned a weak (β = 0.005)

non-linearity (the same random allocation is used in all numerical experiments). Neighboring

oscillators in the chain are coupled by a linear spring of strength ω1 = 1.5. In addition, the

strength Δi of the coupling between the signal u(t) and the oscillators is randomly set to a fixed

value Δ� (benchmark problem-dependent) for 50% of the oscillators, and is zero otherwise.

The amplitude A driving uniformly all the oscillators depends on the particular benchmark

problem (see below).

Computing with networks of nonlinear mechanical oscillators
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Eq (2) is integrated numerically using a Runge-Kutta method. In order to extract the enve-

lopes of the rapidly-oscillating signals xi(t), these are multiplied by cos(Ot), decimated by a fac-

tor of 10, and passed through a seventh order low-pass Butterworth filter. The envelope signals

so-obtained, labeled χi(t), contain only the low-frequency amplitude variations in the oscillator

positions. They are used to form the output signal

yðtÞ ¼
XN

i¼1

wiwiðtÞ; ð7Þ

where the weights wi are computed from the data accumulated during the training period.

During the training period, a signal u(t) is applied to the network, producing the data matrix

X, with [X]ij = χi(tj) for discrete times tj, j = 1. . .M. The N-by-N matrix X XT is inverted (with

Tikhonov regularization) to obtain the weights from the vector of the target function evaluated

at the same time steps. It should be noted that the matrix X XT can be computed in real time

by accumulating N(N + 1)/2 values at each time step. The training period is then followed by a

measurement period, where the weights are fixed, the signal u(t) continues to be applied to the

network, and the network’s ability to reproduce the target function correctly is measured.

The parity function is considered as a first benchmark, as it requires both memory and

non-trivial non-linear computational capabilities [15]. For this task, u(t) is a binary signal that

can randomly switch between the two states −1 and +1 whenever t is an integer multiple of a

period T. The nth-order parity of u is defined as

PnðtÞ ¼
Yn

i¼1

uðt � iTÞ; ð8Þ

and requires data between t − nT and t − T to be continuously computed. Numerical experi-

ments were performed with T = 65 and O = 1.14, so that the input signal u(t) was switching at

most every 9.07 cycles of the cos(Ot) drive. The amplitude parameters were set to A = 0.8 and

Δ� = 0.7. In order to increase the robustness of the estimation of the parity functions, the

weights were computed on ten contiguous, equal-length sub-sections of the full oscillator

chain during a training phase of duration 359T. Each sub-section had its own set of weights

and was sufficiently long (40 oscillators) to produce a good estimate of the parity function for

most inputs. The ten estimates from the ten sub-sections were averaged, the sum was inte-

grated over each period T, and the sign of the integral was used to decide between a value of -1

or of +1 for the parity function estimated by the network.

Fig 2 shows a numerical example obtained for parity functions of order 3, 4 and 5. Esti-

mated parity values of +1 or -1 indicate that all ten sub-sections of the full chain, which are

mostly equivalent to shorter independent chains with N = 40, were all able to obtain the correct

value. On the other hand, estimated parity values around 0 (as observed more frequently for

P5) indicate that the equivalent shorter chains were unable to agree on a valid parity value. As

in Fig 2, it is observed in larger scale experiments that the accuracy of the network decreases

with increasing order of the parity function, with a proportion of correctly estimated parity

values of 100% for P3, (93.48 ± 0.0031)% for P4 and (68.78 ± 0.0058)% for P5. The training pro-

cess appears to be relatively robust, with the 10th percentile of the proportion of correctly esti-

mated parity values for repeated training runs (which differ only in the randomly generated

training data) estimated at 86.2% and 60.4% for P4 and P5, respectively.

A convenient way to compare the capacitites of the oscillator networks to other results in

the reservoir computing literature is to estimate their so-called memory capacity, as intro-

duced in reference [3]. As bits are distributed equally between −1 and +1 in both the input and

Computing with networks of nonlinear mechanical oscillators
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output of the parity benchmark, the mutual information [3] is estimated using

MIt ¼ pt log 2ð2ptÞ þ ð1 � ptÞ log 2ð2ð1 � ptÞÞ; ð9Þ

for pτ the success probability of the delayed 3rd order parity function, defined as

Y2

i¼0

uðt � ðiþ tÞTÞ: ð10Þ

The memory capacity is then given by

X4

t¼0

MIt; ð11Þ

with the sum truncated at τ = 4 because larger delays have negligible mutual information. The

mutual information for the delayed P3 function is 1 bit for a delay τ� 2T, and then drops rap-

idly to 0.44 bit for τ = 3T and less than 0.04 bit for τ� 4T. The resulting memory capacity is

approximately 3.5 bits, similar to performance levels for large networks published in the reser-

voir computing literature (e.g. reference [3] presents a reservoir with 250 neurons with a mem-

ory capacity of 4.8 bits).

As another benchmark, we consider the classification of recorded time series for the spoken

words “zero” to “nine”. This is a conventional benchmark for non-trivial classification tasks

(e.g. ref. [16]), when the NIST TI-46 data set [17] is used. We use from this data set utterances

of the words from 7 different female speakers. In this task, the driving signal u(t) is formed by

concatenating time series of the utterances, padded with periods of silence (duration 70). The

mean of each time series is removed, the time series is normalized by its standard deviation,

and its absolute value is used for u(t). The time series are provided in TI-46 at a sampling rate

of 12.5 kHz. In order to adapt the time series to the dynamics of the simulated oscillators, we

stretch every second of time series data to 97.2 time units in the numerical simulation, which

is the equivalent of having oscillators driven at a frequency of 808 Hz (O = 1). As a result, the

network mostly uses the low frequency content of the sound recordings to classify the utter-

ances. The amplitude parameters were set to A = 2 and Δ� = 6.

Fig 2. Computing parity functions with a network of coupled anharmonic oscillators. Driving term u(t),

P3(t), P4(t), P5(t) (top to bottom, shifted vertically for clarity). Green curves correspond to the training phase

(t < 0). For t > 0, red curves correspond to the target functions, while blue curves correspond to the network

outputs.

https://doi.org/10.1371/journal.pone.0178663.g002
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The training was performed on 800 utterances chosen randomly between the ten digits.

One set of weights was computed for each digit. As for the parity benchmark, the chain of

N = 400 oscillators was split into sub-sections to improve robustness, this time into 19 sub-sec-

tions of length 40, each overlapping the next by 20 oscillators. Each sub-section had its own set

of weights and produced a value that should be one if the digit corresponding to this set was

spoken, and zero otherwise. The values produced from the weights were integrated over each

period where an utterance was submitted to the network. As a result, for each utterance, the

nineteen sub-sections for each of the ten digits produced a total of 190 numbers cij, with i = 1,

. . ., 10 and j = 1, . . ., 19. The classification from the network was then obtained using 10 × 9/2

pair comparisons in a one-vs.-one manner, according to

DT
ii0 ðci � ci0 Þ≷

i

i0
Tii0 ; ð12Þ

where Tii0 is a threshold number, Dii0 is a vector of coefficients to linearly combine the compo-

nents of the difference of vectors ci and ci0, which correspond to [ci]j = cij. The digit i or i0 that

was returned earned one vote for each comparison, and the digit with the largest number of

votes was returned by the network for the utterance. The coefficient vectors were computed

using Fisher’s linear discriminant, according to

Dii0 ¼ ðNiΣi þ Ni0Σi0 þ l1Þ� 1
ðμi � μi0 Þ; ð13Þ

where Ni is the number of i digits in the training data, Si is the covariance matrix of vector ci, λ
is a small regularization parameter, μi is the average of the vector ci, and similarly for i0. Each

threshold Tii0 was adjusted to maximize the probability over the training set of Eq (12) to

return the correct digit when i and i0 occurred with equal probability.

Fig 3 presents results for the words classification benchmark. The results correspond to the

average performance of 25 different training runs, performed on the same network. For all

training runs, the variability in success rate is consistent with uncertainties from the finite sam-

ple size, indicating that the training procedure is repeatable. The results are relatively good,

with the network correctly classifying randomly chosen utterances in (0.802 ± 0.009)% of the

trials. It can be seen in Fig 3 that classification errors are principally made between small

groups of digits such as {1, 3, 9} and {4, 5}, indicating that it is harder for the network to dis-

criminate between digits within these groups than between these and other digits.

The results can be compared to other experiments in the reservoir computing literature.

While success rates above 99% have been reported (for five speakers instead of seven as in this

work) for networks of 200 nodes (e.g. ref. [10, 18]), these experiments all make use of elabo-

rated pre-processing schemes (specifically, the Lyon cochlear ear model [19]). It has been

shown in ref. [20] that pre-processing greatly affects the efficiency of spoken words classifica-

tion, with some pre-processors (e.g. using Mel-frequency cepstrum coefficients) performing

well under 70% success rates for networks of 200 nodes. The results presented here with the

oscillator network do not include any pre-processing, except for the rectification of the input

time series to form the input signal u(t), and the normalization of the time series amplitudes.

This is intended to reflect a simple system where the sound pressure directly modulates the

driving force on the oscillators (e.g. by displacing a membrane). More complicated systems,

for instance with modulation amplitudes for different oscillator groups that depend on the

sound frequency, could in principle be significantly more efficient.

Computing with networks of nonlinear mechanical oscillators
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2 Discussion

Fig 4 shows variations in the success probability for the parity functions, as the global parame-

ters A (amplitude of oscillator drive) and T (period of input binary signal) are varied. Each net-

work is trained and operated independently as described in section 1. It is observed that the

region of global parameter space where the performance of the network is good is reasonably

large, indicating that the precise matching of the network to a given signal (especially with

respect to T) is not required.

Similarly, Fig 5 shows the reduction in the success probability for the parity functions,

when the parameters of the oscillators in the network are not all identical, but are rather taken

to fluctuate randomly, for instance to simulate the effect of manufacturing tolerances, accord-

ing to

li ! lið1þ szÞ; ð14Þ

where λi can be any of the parameters in the set {A, Q, β, ω0, ω1, Δ} for the ith oscillator, σ is the

relative fluctuation level, and z is a standard normal random variable (zero mean and unit vari-

ance). Each perturbed network is trained and operated independently as described in section

1. While the performances of the network do depend on the nominal value of the parameters

set for the oscillators, these data demonstrate for the parity function that the network is quite

robust when the parameters of individual oscillators are independently varied around these

Fig 3. Words classification benchmark results. The color-scale indicates the probability that a digit

presented to the device (columns) is classified to a certain value (lines) by the oscillators network. The

numbers at the top of each column indicate the success probability (prediction matches the actual digit),

estimated with an uncertainty of ±1% (95% confidence level).

https://doi.org/10.1371/journal.pone.0178663.g003
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Fig 5. Robustness of the parity benchmark for pre-training variations. Variations in the success probability (P) for the three parity functions (blue: P3,

green: P4 and red: P5) as the relative variation σ is increased, for perturbations introduced before the training of the network is performed. Error bars are

computed at the 95% confidence level.

https://doi.org/10.1371/journal.pone.0178663.g005

Fig 4. Global tuning of network parameters. Success probability (P) for the three parity functions (P3, P4, P5, left to right) as the period T of the input

binary signal and the amplitude A of the oscillator drive are varied globally for the whole network.

https://doi.org/10.1371/journal.pone.0178663.g004
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nominal values. In particular, the oscillators can be significantly detuned in frequency (varia-

tions in ω0) with the network still performing well on the parity benchmark, thus indicating

that the dynamics of the network that are useful for computations are not the result of a pre-

cisely tuned resonant coupling of the oscillators.

On the other hand, Fig 6 shows how the success probability for the parity functions is

reduced when perturbations described by Eq (14) are introduced just after the training of the

network has been completed. This situation corresponds to oscillator parameters that are drift-

ing over time. It can be observed that the success probability is almost independent of varia-

tions in the quality factor (Q), for relative variations as high as 10%. For the non-linear

parameter (β) and the coupling strength (Δ), it is not reduced significantly for relative varia-

tions up to 1%, but drops rapidly for large variations. Finally, the success probability seems to

degrade continuously with the magnitude of the relative variations for the harmonic drive

amplitude (A), the coupling strength (ω1) and the oscillator natural frequency (ω0). These

observations are compatible with the hypothesis that computational capabilities depend

Fig 6. Robustness of the parity benchmark for post-training variations. Variations in the success probability (P) for the three parity functions (blue: P3,

green: P4 and red: P5) as the relative variation σ is increased, for perturbations introduced after the training of the network is performed. Error bars are

computed at the 95% confidence level.

https://doi.org/10.1371/journal.pone.0178663.g006
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strongly on the network being operated at a precise point with respect to its dynamics (as

determined mostly by A, ω1 and ω0), presumably where the motion of the oscillators is com-

plex, but not chaotic. They also indicate that in actual physical devices, requirements on the

stabilization of most parameters should be relatively mild (*1%), except for the parameters A,

ω1 and ω0 which will have to be stable at the 0.1% level.

3 Conclusion

Non-linear mechanical oscillators arranged in a network using linear couplings can be used to

perform complex computations, as demonstrated in this communication by numerical simula-

tions of a single instance of a network that performs well on two widely different benchmark

tasks (computation of parity functions, and classification of spoken words). The computational

capacities of this network are preserved when the global network parameters are tuned to dif-

ferent values in a relatively large parameter space, when large (over 10%) random variations

are introduced in the oscillator parameters before the network training phase, and when signif-

icant variations (0.1% to 1%, depending on the parameter) in the oscillator parameters are

introduced after the training phase has been completed with a network of oscillators having

nominal parameter values.

These results show the existence of a new class of computing devices based on networks of

coupled non-linear mechanical oscillators. We have described one example of such device

which, as mentioned above, performs robustly on two difficult computing tasks. It is remark-

able that this device has a low complexity (400 oscillators) relative to modern microelectronic

components. As explained in the introduction, this leads to the possibility of creating small

and energy-efficient devices that are highly relevant technologically.

The device that was simulated in this work was constructed randomly from a small set of

rules that are described in section 1. These rules were only minimally tuned in order to obtain

good performances on the benchmark tasks. It was observed, for instance, that smaller net-

works did not perform as well on the spoken words benchmark. It is a general characteristic of

the reservoir computing approach that the details of the dynamical systems that are used for

computing are not directly relevant. However, it is likely that devices that differ from the one

studied in this work might perform better, on a broader set of computing tasks. Studies related

to the optimization of parameters of mechanical oscillator networks, including the number of

oscillators, their linear and non-linear characteristics, as well as the way they are interconnec-

ted, for instance, will be the subject of future communications.

As the mechanical oscillators can be directly coupled to forces produced by the environ-

ment of the network (accelerations, sound pressure, etc.), devices having both sensing and

computing capabilities can be envisioned. The devices, fabricated using MEMS technologies,

for instance, could be very compact and energy-efficient, and compete with state-of-the-art

sensors and microelectronic devices for distributed sensing or robot control.
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